Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Visualization grammars are gaining popularity as they allow visualization specialists and experienced users to quickly create static and interactive views. Existing grammars, however, mostly focus on abstract views, ignoring three-dimensional (3D) views, which are very important in fields such as natural sciences. We propose a generalized interaction grammar for the problem of coordinating heterogeneous view types, such as standard charts (e.g., based on Vega-Lite) and 3D anatomical views. An important aspect of our web-based framework is that user interactions with data items at various levels of detail can be systematically integrated and used to control the overall layout of the application workspace. With the help of a concise JSON-based specification of the intended workflow, we can handle complex interactive visual analysis scenarios. This enables rapid prototyping and iterative refinement of the visual analysis tool in collaboration with domain experts. We illustrate the usefulness of our framework in two real-world case studies from the field of neuroscience. Since the logic of the presented grammar-based approach for handling interactions between heterogeneous web-based views is free of any application specifics, it can also serve as a template for applications beyond biological research.more » « less
-
Recent advances in high-resolution connectomics provide researchers access to accurate reconstructions of vast neuronal circuits and brain networks for the first time. Neuroscientists anticipate analyzing these networks to gain a better understanding of information processing in the brain. In particular, scientists are interested in identifying specific network motifs, i.e., repeating subgraphs of the larger brain network that are believed to be neuronal building blocks. To analyze these motifs, it is crucial to review instances of a motif in the brain network and then map the graph structure to the detailed 3D reconstructions of the involved neurons and synapses. We present Vimo, an interactive visual approach to analyze neuronal motifs and motif chains in large brain networks. Experts can sketch network motifs intuitively in a visual interface and specify structural properties of the involved neurons and synapses to query large connectomics datasets. Motif instances (MIs) can be explored in high-resolution 3D renderings of the involved neurons and synapses. To reduce visual clutter and simplify the analysis of MIs, we designed a continuous focus&context metaphor inspired by continuous visual abstractions [MAAB∗18] that allows the user to transition from the highly-detailed rendering of the anatomical structure to views that emphasize the underlying motif structure and synaptic connectivity. Furthermore, Vimo supports the identification of motif chains where a motif is used repeatedly to form a longer synaptic chain. We evaluate Vimo in a user study with seven domain experts and an in-depth case study on motifs in the central complex (CX) of the fruit fly brain.more » « less
An official website of the United States government

Full Text Available